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Abstract

Examinations of both population genetic structure and the processes that lead to such structure in croc-
odilians have been initiated in several species in response to a call by the IUCN Crocodile Specialist Group.
A recent study used microsatellite markers to characterize Morelet’s crocodile (Crocodylus moreletii)
populations in north-central Belize and presented evidence for isolation by distance. To further investigate
this hypothesis, we sequenced a portion of the mitochondrial control region for representative animals after
including samples from additional locales in Belize, Guatemala and Mexico. While there is limited evidence
of subdivision involving other locales, we found that most of the differentiation among populations of
C. moreletii can be attributed to animals collected from a single locale in Belize, Banana Bank Lagoon.
Furthermore, mitochondrial DNA sequence analysis showed that animals from this and certain other
locales display a haplotype characteristic of the American crocodile, C. acutus, rather than C. moreletii. We
interpret this as evidence of hybridization between the two species and comment on how these new data
have influenced our interpretation of previous findings. We also find very low levels of nucleotide diversity
in C. moreletii haplotypes and provide evidence for a low rate of substitution in the crocodilian mito-
chondrial control region. Finally, the conservation implications of these findings are discussed.

Introduction

The International Union for the Conservation of
Nature and Natural Resources (IUCN) Crocodile
Specialist Group (CSG) recently emphasized the
need for population genetic surveys of several
crocodilian species, including some considered to

be critically endangered (Ross 1998). The objec-
tives of these surveys are to obtain basic infor-
mation on phylogeography, population structure
and migration patterns, to gather data on pater-
nity patterns and the related issues of sperm
storage and sperm competition, and to exam-
ine suspected introgression from widespread
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crocodilians into the genomes of more restricted
species (e.g., invasion by the American crocodile
[Crocodylus acutus] into Cuban crocodile
[C. rhombifer] habitat and resulting hybridization,
see Ramos et al. 1994). This information can be
used to implement more effective conservation
strategies for crocodilians.

Microsatellite data have been informative in
accomplishing several of these goals. Examination
of microsatellite loci in American alligator (Alli-
gator mississippiensis) populations has documented
population structure (Glenn et al. 1998, Davis et al.
2001a) and demonstrated multiple paternity (Davis
et al. 2001b). Microsatellites developed for the
genus Crocodylus by FitzSimmons et al. (2001)
have the potential to be at least as useful. These loci
not only amplify DNA in many crocodilian species,
but are often highly variable (Dever and Densmore
2001). These loci have also been used to identify
captive hybrids of C. rhombifer, the Siamese croc-
odile (C. siamensis), and the Estuarine crocodile
(C. porosus) to prevent their re-introduction to the
wild (FitzSimmons et al. 2002).

In contrast, mitochondrial DNA (mtDNA)
sequence data sets have not been extensively em-
ployed in population-level studies of crocodilians.
Most studies using mitochondrial data sets have
focused on phylogenetic questions rather than
population structure or phylogeography (Dens-
more and Owen 1989; Densmore and White 1991;
Gatesy and Amato 1992; Ray et al. 2001). This is
somewhat surprising since the population struc-
ture of many other vertebrates have been exam-
ined using DNA sequences from coding (Donovan
et al. 2000; Fleischer et al. 2001; Hoffman and
Baker 2001; Kotlik and Berrebi 2001; Nielson
et al. 2001), and non-coding regions of the mito-
chondrial genome (Lahanas et al. 1994; Walker
and Avise 1998; Cicero and Johnson 1998; Bar-
rowclough et al. 1999; Roman et al. 1999; Vila
et al. 1999; Milot et al. 2000; Rooney et al. 2001;
Jensen-Seaman and Kidd 2001; Dawson et al.
2001). The non-coding sequences are often shown
to be the most variable portion of the genome
(McMillan and Palumbi 1997; Baker and Marshall
1997; but also see Randi and Lucchini 1998;
Crochet and Desmarais 2000), suggesting that the
control region may be a useful marker for studies
of crocodilian populations.

Recently, Glenn et al. (2002) published data
examining mitochondrial control region haplotype

distributions in A. mississippiensis. They found a
very low level of nucleotide diversity – only three
haplotypes spread across the southeastern United
States. These data fit a well-documented trend of
low levels of molecular variation for several
markers (Gartside et al. 1977; Menzies et al. 1979;
Adams et al. 1980; Glenn et al. 1998), but con-
tradict the most recent analyses with microsatel-
lites (Davis et al. 2002). A potential weakness of
this study is that only 25 individuals were exam-
ined (Glenn et al. 2002). For researchers to accu-
rately judge the levels of mtDNA variation that
are expected in crocodilian populations, studies of
other species and larger sample sizes are required.

Morelet’s crocodile (Crocodylus moreletii) is
one of two crocodile species to occur in Mexico,
Guatemala, and Belize. C. moreletii typically
inhabits freshwater wetland habitats while
C. acutus is restricted to coastal mainland habitats
and offshore islands (Platt 1996; Platt and
Thorbjarnarson 2000a,b). Both species were sub-
jected to extensive hunting pressures during the
middle of the 20th century leading to drastic
population declines (Charnock–Wilson 1970; Platt
1996; Platt and Thorbjarnarson 2000a,b; Ross
1998). Both are currently considered endangered
by the IUCN and listed on Appendix I of CITES
(Platt and Thorbjarnarson 2000a,b; Ross 1998).

Dever et al. (2002) initiated a population ge-
netic analysis of C. moreletii in Belize using mi-
crosatellite markers in order to assess the genetic
variability of Morelet’s crocodile. Results of this
study demonstrated levels of genetic variation in
north-central Belize (average HO ¼ 0.49) compa-
rable to the American alligator and revealed evi-
dence for some population substructure
(RST ¼ 0.1). The structure observed was primarily
due to the inclusion of animals from a single small
population found in Banana Bank Lagoon near
the Belize River at the southern end of the sampled
range. Dever et al. (2002) suggested that the ob-
served data could support an isolation by distance
model of gene flow (Wright 1978).

Our study expanded on Dever et al. (2002) by
incorporating mitochondrial control region se-
quence data for a representative subsample of the
animals originally examined and for additional
animals from several more distant locales, includ-
ing southern Belize, Mexico and Guatemala
(n ¼ 140). Our objectives were to (1) examine
intraspecific variation within the mitochondrial
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control region and investigate its utility as a phy-
logeographic marker using Crocodylus moreletii as
a model and (2) use the mitochondrial data to
evaluate the hypothesis proposed by Dever et al.
(2002) that Morelet’s crocodile populations follow
an isolation-by-distance model of genetic differ-
entiation. After collecting preliminary data, we
noted several individuals bearing haplotypes clo-
sely resembling those found in C. acutus than in
C. moreletii. Thus, we examined C. moreletii
populations for evidence of hybridization with
C. acutus by identifying haplotype differences.

Methods

Sampling and data collection

As part of continuing studies of Morelet’s croco-
dile populations, we have sampled several locales
(Figure 1) previously reported by Dever et al.
(2002). We also sampled crocodiles at two addi-
tional sites in Belize: Crooked Tree Wildlife
Sanctuary and the Macal River. All new samples
were collected during the spring and summer of
2001 and 2002 using the methods described in

Dever and Densmore (2001). Sample sizes for each
locale can be found in Table 1. Total genomic
DNA was extracted from blood samples using the
Gentra Puregene isolation kit (Gentra Systems,
Minneapolis, MN). Total genomic DNA was also
isolated from skin clips of animals captured in the
states of Peten, Guatemala and Tabasco, Mexico,
using standard PCI protocols (Sambrook et al.
1989). For outgroup comparisons, control region
sequences from the American crocodile (Crocody-
lus acutus), the Orinoco crocodile (C. intermedius),
the Cuban crocodile (C. rhombifer), and the Nile
crocodile (C. niloticus) were obtained from Gen-
Bank (accession numbers AF460218, AF460207,
AF460214 and AF460211, respectively).

Amplification of an �540 bp DNA fragment
(starting 6 bp within the tRNA-Pro gene and
ending just 3¢ of CSB-1 in domain III of the
mitochondrial control region) was performed
using protocols and primers as previously de-
scribed in Ray and Densmore (2002). Following
amplification, PCR products were purified using
the Qiagen PCR purification kit (Qiagen Inc.,
Valencia CA). Chain termination sequencing
reactions were performed on both strands using
the PCR primers and chromatograms were

Figure 1. Map of sampling locales. BB ¼ Banana Bank Lagoon, Cox ¼ Cox Lagoon, CT ¼ Crooked Tree Wildlife Sanctuary,
GBL ¼ Gold Button Lagoon, Hab ¼ Habanero Lagoon, InCr ¼ Indian Creek, IrCr ¼ Irish Creek, Mac ¼ Macal River, NR ¼ New
River, NRL ¼ New River Lagoon, Pet ¼ Peten, Guatemala, Tab ¼ Tabasco, Mexico.
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obtained using ABI 310 and 3100 genetic analyz-
ers. Sequences were visualized, aligned and edited
with the program BioEdit (Hall 1999). All se-
quences have been added to GenBank under
accession numbers AY136686–AY136738 and
AY341444–AY341530. Haplotype definitions and
distributions have been deposited at the Popula-
tion Genetics Database (http://seahorse.louisi-
ana.edu/PGDB/).

Data analysis

PAUP* v4.0b10 (Swofford 1998) was used to
generate HKY85 (Hasegawa et al. 1985) genetic
distances for the mtDNA sequences as suggested
by a likelihood ratio test implemented using
Modeltest 3.06 (Posada and Crandall 1998) We
employed Arlequin v2.000 (Schneider et al. 2000)
to perform analyses of haplotype frequencies, to
obtain estimates of FST, to perform tests of pop-
ulation subdivision via AMOVA, and to perform
Mantel’s tests (Mantel 1967) with both distance

and FST estimates. Arlequin also was used to
perform mismatch analyses (Rogers and Har-
pending 1992), and to estimate haplotype and
nucleotide diversities (Nei 1987, p.180 and 257). A
median-joining network of haplotypes was con-
structed using Network (Bandelt et al. 1999,
www.fluxus-engineering.com)

Results

One hundred forty initial mtDNA control region
sequences ranging from 534 to 537 bp were ob-
tained. The relative lack of insertion/deletion
events (6) made alignment of the sequences
straightforward. Among the crocodiles sampled,
there were 45 polymorphic sites and 20 unique
haplotypes (A–T). A median joining analysis of
the haplotypes yielded a network that clearly
clusters the haplotypes into two clades separated
by 21 sequence changes (Figure 2). Haplotypes in
clade 2 are primarily from animals collected at

Table 1. Haplotype distribution for mtDNA control region sequences

Haplotype Sample location

BB

(17)

Cox

(6)

CT

(3)

GBL (13) Hab

(11)

InCr (3) IrCr

(5)

Mac

(11)

NR (23) NRL

(38)

Pet

(5)

Tab

(5)

A 2 5 2 13 9 1 2 9 19 29 2 4

B 14 – – – – 2 2 – – 4 – –

C – – – – – – – – – 2 – –

D 1 – – – – – – – – – – –

E – 1 – – – – – – – – – –

F – – 1 – – – – – – – – –

G – – – – 1 – – – – – – –

H – – – – 1 – – – – – – –

I – – – – – – 1 – – – – –

J – – – – – – – 1 – – – –

K – – – – – – – 1 – – – –

L – – – – – – – – 1 – – –

M – – – – – – – – 1 – – –

N – – – – – – – – – 1 – –

O – – – – – – – – – 1 – –

P – – – – – – – – – 1 – –

Q – – – – – – – – – – 1 –

R – – – – – – – – – – 1 –

S – – – – – – – – – – 1 –

T – – – – – – – – – – – 1

Sample sizes from each locale are indicated in parentheses.
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Banana Bank Lagoon, but this clade is also com-
prised of samples from New River, New River
Lagoon and Indian Creek.

Other crocodylian control region sequences
ranged from 533 bp in Crocodylus niloticus to
534 bp in both C. intermedius and C. rhombifer to
536 bp in C. acutus. The inclusion of outgroup
taxa in a neighbor-joining tree of unique haplo-
types (Figure 3) strongly suggested that all of the
haplotypes present in clade 2 had originated in
C. acutus and not C. moreletii (bootstrap ¼ 95%).
This was verified by incorporating ten additional
sequences from C. acutus (accession numbers
AY568308–AY568317). These sequences, ob-
tained from animals originating from the west
coast of Mexico to Florida were not substantially
different from the original C. acutus reference se-
quence – five haplotypes (U–Y) with an average of
1.82 differences between them. Therefore, we des-
ignated each unique haplotype as either C. more-
letii-like or C. acutus-like.

The average HKY85 genetic distance estimate
among all unique C. moreletii-like haplotypes was
0.0062 ± 0.0087, and among all C. acutus-like
haplotypes was 0.0048 ± 0.0040. The average
genetic distance between acutus-like and moreletii-
like unique haplotypes was 0.0553 ± 0.0049.

When each haplotype was examined for geo-
graphic distribution (Table 1), one, A, was found
to be present in all sampled locales. Haplotype A
was found at a high frequency (‡0.40) in all locales
except Banana Bank Lagoon where haplotype B
(C. acutus-like) predominated. The remaining
haplotypes were, for the most part, single exam-
ples scattered throughout the range. Within-pop-
ulation haplotype diversity ranged from zero at
Gold Button Lagoon to 0.413 ± 0.097 in New
River Lagoon (Table 2). Overall haplotype diver-
sity (h) for the 140 original samples was
0.502 ± 0.048 and 0.251 ± 0.055 for C. moreletii-
like haplotypes only. Overall nucleotide diversity
(p) was 0.013 ± 0.007 and 0.00072 ± 0.00073 for
C. moreletii-like haplotypes.

After incorporating all individuals for which
control region sequence was available, our esti-
mate of FST was 0.28 (see Table 3 for complete FST

listings). We suspected, however, that any popu-
lation genetic structure found that involved the
Banana Bank population may have resulted from
either invasion of C. acutus into habitat considered
typical of C. moreletii and subsequent misidentifi-
cation of these animals or from the inclusion of
C. Moreletii–C. acutus hybrids in our sample.
Therefore, we performed two sets of analyses on

Figure 2. Median-joining network of C. moreletii-like and C. acutus-like haplotypes.Connections between haplotypes indicate single
sequence differences unless otherwise indicated.
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Figure 3. Neighbor-joining tree of unique haplotypes and outgroup sequences generated using HKY85 genetic distances. Numbers at
nodes indicate bootstrap values (1000 replicates).

Table 2. Haplotype (h) and nucleotide (p) diversity estimates for C. moreletii mtDNA
control region sequences

Localea All data

Haplotype diversity Nucleotide diversity

Banana Bank 0.324 ± 0.136 0.0091 ± 0.0045

Cox Lagoon – –

Crooked Tree – –

Gold Button Lagoon 0 0

Habenero 0.346 ± 0.172 0.0007 ± 0.0004

Indian Creek – –

Irish Creek – –

Macal River 0.182 ± 0.021 0.0003 ± 0.0003

New River 0.324 ± 0.124 0.0064 ± 0.0036

New River Lagoon 0.413 ± 0.097 0.0123 ± 0.0031

Peten, Guat. – –

Tabasco, Mex. – –

Overall 0.502 ± 0.048 0.251 ± 0.055

a Locales with n < 10 are excluded from individual estimates of diversity but included in overall
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the data set. One set incorporated all data from
every animal collected. The second set of analyses
involved the removal of any samples in which the
C. acutus-like haplotype had been identified. This
dual pattern of data analysis is discussed in each
relevant table and will be followed for the
remainder of the paper. An unfortunate conse-
quence of removing individuals bearing the
C. acutus-like haplotype from the second set of
analyses was to substantially reduce sample sizes
at Banana Bank Lagoon (from 17 to 2), Irish
Creek (5 to 3), and Indian Creek (3 to 1). Indi-
viduals from New River and New River Lagoon
were also removed but sample sizes remained
reasonable (21 and 31, respectively).

Removing individuals with C. acutus-like
haplotypes reduced FST to 0.06 but three popula-
tion pairs remained that continued to show high
pairwise FST values. Comparisons between the
Peten, Guatemala population and New River,
New River Lagoon, and Gold Button Lagoon
were significantly different from those expected
under a null hypothesis of no population differ-
entiation when C. acutus-like haplotypes are not
considered. Values ranged from 0.333 (NR versus
Peten, P ¼ 0.028) to 0.481 (GBL versus Peten,
P ¼ 0.010).

An examination of the possible correlation
between genetic and geographic distances
using Mantel test and incorporating all
sequences did not support a model of isolation by

distance (correlation coefficient (r) ¼ )0.137,
P ¼ 0.750). While removing C. acutus-like haplo-
types from analyses of populations increased the
correlation between geography and genetic simi-
larity, results were not significant (r ¼ .0918,
P ¼ 0.334).

Discussion

Diversity estimates

This study represents only the second analysis of
crocodilian mitochondrial control region DNA to
be performed from a population genetic perspec-
tive. It is also the first to use mtDNA as a tool for
such studies in a member of Crocodylus. The only
previous examination of a crocodilian was per-
formed by Glenn et al. (2002) for the American
alligator. In that study, levels of haplotype and
nucleotide variation in A. mississippiensis were low
(h ¼ 0.313, p ¼ 0.00034). Our estimates of nucle-
otide diversity are twice as high as those reported
by Glenn et al. (2002) but, with the exception of
some turtles (Avise et al. 1992; Lahanas et al. 1994;
Encalada et al. 1996; Roman et al. 1999), are still
very low in comparison to estimates in other ver-
tebrates (Cicero and Johnson 1998; Barrowclough
et al. 1999; Vila et al. 1999; Milot et al. 2000;
Dawson et al. 2001; Jensen-Seaman and Kidd
2001). Nucleotide diversity increases to levels

Table 3. Pairwise estimates of FST for sampled populations

BB Cox CT GBL Hab InCr IrCr MR NR NRL Pet Tab

Banana Bank Lag. – )0.304 )0.200 0.000 )0.276 0.000 )0.200 )0.276 )0.308 )0.317 )0.017 )0.290
Cox Lagoon 0.638 – )0.059 0.139 )0.068 )1.000 )0.059 )0.068 )0.021 0.029 0.094 )0.097
Crooked Tree 0.568 )0.059 – 0.490 )0.024 )1.000 )0.200 )0.024 0.156 0.283 )0.090 )0.104
Gold Button Lag. 0.795 0.139 0.490 – 0.069 0.000 0.490 0.069 )0.004 )0.021 0.481 0.207

Habanero Lag 0.632 )0.068 )0.024 0.069 – )0.900 )0.024 )0.045 )0.010 0.027 0.141 )0.071
Indian Creek )0.102 0.372 0.143 0.817 0.398 – )1.000 )0.900 )0.950 )0.967 )0.500 )1.000
Irish Creek 0.188 0.167 )0.014 0.558 0.210 )0.235 – )0.024 0.156 0.283 )0.090 )0.104
Macal River 0.632 )0.068 )0.024 0.069 )0.045 0.398 0.210 ) )0.010 0.027 0.141 )0.071
New River 0.626 )0.053 0.016 0.029 )0.032 0.417 0.245 )0.032 – )0.015 0.333 0.002

New River Lag. 0.541 0.038 )0.020 0.060 )0.014 0.292 0.152 )0.014 )0.017 – 0.451 0.069

Peten, Guatemala 0.467 0.094 )0.090 0.481 0.141 0.073 )0.012 0.141 0.202 0.151 – 0.044

Tabasco, Mexico 0.619 )0.097 )0.104 0.207 )0.071 0.311 0.118 )0.071 )0.053 )0.046 0.044 –

Estimates incorporating all sequences are located below the diagonal. Estimates above the diagonal were calculated after removing C. acutus-

like haplotypes. Estimates with P-values £ 0.05 are italicized.
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comparable to other vertebrates only when
C. acutus-like haplotypes are included.

The distribution of A. mississippiensis is more
extensive than that of C. moreletii and thus greater
nucleotide variation in the alligator might be ex-
pected. However, as Glenn et al. (2002) suggested,
a population bottleneck 21,000±1500 years ago
(Jackson 2000; Waters et al. 2000) may have
played a role in reducing nucleotide diversity since
the lower effective population size of mtDNA
would impact this genome more severely than the
nuclear genome (Maruyama and Fuerst 1984,
1985). The pattern of variation found at poly-
morphic microsatellite loci in C. moreletii (Dever
et al. 2002) is similar to that found in American
alligators (Glenn et al. 1998) in that there are high
levels of variation at polymorphic loci, an obser-
vation consistent with the hypothesis of a recent
bottleneck.

The mismatch distribution calculated from the
mitochondrial sequence data, however, does not
support the bottleneck scenario (Figure 4). The
plot for only C. moreletii-like data is consistent
with a population that has been at equilibrium in
the recent past (cf. Figure 2 of Rogers and Har-
pending 1992) and thus suggests that a population
bottleneck similar to the one hypothesized for
A. mississippiensis is unlikely. Adding haplotypes
characteristic of the American crocodile causes the
plot to mimic those encountered when there is
incomplete lineage sorting. It is indeed possible
that paraphyly caused by the retention of two

haplotypes which were characteristic of the com-
mon ancestor of both C. acutus and C. moreletii
exists in C. moreletii (see Funk and Omland 2003).
We do not discount this scenario. However, it is
clear that this level of sequence divergence (5.53%)
is more typical of comparisons between well-de-
fined species of Crocodylus (avg. HKY85 diver-
gence ¼ 6.46%; see Table 4 and Ray et al. 2001).

Another possibility is that a recent event has
reduced the nucleotide diversity via a selective
sweep or some other event that mimics the effect of
a sweep. This is a difficult hypothesis to test but we
would expect that such a process would result in a
mismatch distribution which mimics one expected
after a bottleneck; again, the calculated distribu-
tion does not follow such a pattern. Finally, there
may be a reduction in the substitution rate in the
control region of mtDNA in crocodilians when
compared with other vertebrates. The sequences
presented here as well those of other crocodilians
suggest that this may indeed be the case.

Using sequences taken from Ray and Dens-
more (2002) we estimated the sequence divergence
between Osteolaemus and all members of Croco-
dylus (accession numbers AF460207–AF460215,
AF461417 and AF460218) using the HKY85
model and incorporating a gamma correction of
0.1911 as suggested by Modeltest v3.06 (Posada
and Crandall 1998). The average divergence was
calculated to be 0.208. Brochu (2000, 2001) has
suggested a minimum divergence between Osteo-
laemus and Crocodylus at 19 mya. After assuming
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this divergence time, we arrived at a substitution
rate of 1.09 · 10)8. This value is 5.4 times lower
than the value typically cited for mammals
(5.9 · 10)8; Brown et al. 1982). Assuming a more
recent divergence for the genus Crocodylus of
12 mya (Brochu, pers. comm.) and calculating the
mean divergence (0.199) between C. cataphractus
and other members of the genus allows us to arrive
at an estimated rate of 1.66 · 10)8, 3.6 times lower
than the standard mammalian rate. If either of
these rates of change is accurate, lower estimates
of mtDNA nucleotide diversity may be expected
when using control region sequences to examining
crocodylian populations.

Population structure

The initial FST estimate (0.28) raised the possibility
that there may be significant subdivision among the
locales sampled. It should be noted, however, that
with the exception of Peten in Guatemala, Banana
Bank Lagoon is the only locale to show high levels
of differentiation from other sampled locales
(Table 3). This is similar to results that Dever et al.
(2002) recovered using nine microsatellite loci.
While it is true that a reduction in statistical power
probably accompanied our switch to a mtDNA
marker, adding sequence data may have clarified
why this population appeared to fit the isolation by
distance model in the original microsatellite analy-
ses (Dever et al. 2002). We hypothesize that the
introgression of Crocodylus acutus genes into
several populations (see below), especially in

Banana Bank Lagoon, may have confounded the
situation with regard to the microsatellite data.
When we removed the haplotypes characteristic of
C. acutus from the data set, our estimate of FST was
reduced to 0.06. Thus, the isolation by distance
model of genetic differentiation may not be appro-
priate for explaining population patterns in
C. moreletii and further investigation is warranted.

Three of the 20 unique haplotypes were located
exclusively in the Peten, Guatemala sample, rais-
ing the possibility that this population has differ-
entiated genetically from the others. This
population was indeed determined to be signifi-
cantly different from New River, New River
Lagoon and Gold Button Lagoon based on
haplotype frequencies (Table 3). However, the
distribution of these three haplotypes on the
neighbor-joining tree did not support any phy-
logeographic pattern and results from the Mantel
tests support this interpretation.

While it is interesting to note FST reductions
when comparing Banana Bank Lagoon, Peten and
the remaining populations, these results must be
interpreted with caution because of large differ-
ences in sample size between the two populations
and others. This is especially true in the case of
Banana Bank Lagoon after removal of the
C. acutus-like haplotypes from the data set. These
two factors introduce the specters of sampling bias
and reduction in statistical power. Thus, the
C. moreletii-like haplotype data appear to give
no substantial evidence of phylogeographic struc-
ture and little information with regard to possi-
ble population substructuring in the Yucatan

Table 4. Pairwise HKY85 distance estimates for comparisons among ten Crocodylus species using control region sequence data

C. acu C. min C. nil C. por C. pal C. mor C. john C. int C. rhom C. siam

C. acutus –

C. mindorensis 0.062 –

C. niloticus 0.049 0.060 –

C. porosus 0.061 0.074 0.063 –

C. palustris 0.054 0.081 0.068 0.054 –

C. moreletii 0.034 0.079 0.059 0.066 0.073 –

C. johnsoni 0.081 0.065 0.074 0.081 0.084 0.101 –

C. intermedius 0.008 0.069 0.052 0.056 0.059 0.030 0.086 –

C. rhombifer 0.038 0.074 0.054 0.070 0.065 0.052 0.086 0.043 –

C. siamensis 0.065 0.083 0.065 0.070 0.054 0.078 0.084 0.070 0.075 –

Sequences are taken from Ray and Densmore (2002).
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Peninsula. However, the Guatemalan population
should be further investigated.

Possible hybridization

Hybridization between C. moreletii and C. acutus
has long been postulated (Ross and Ross 1974;
Ross and Mayer 1983). Typically, specimens of
C. moreletii have five to six scales in each trans-
verse dorsal scale row and exhibit irregular scale
groups on both the ventral and lateral surfaces of
the tail (Brazaitis 1973; Ross and Ross 1974; Ross
and Mayer 1983) while specimens of C. acutus
exhibit fewer scales in each dorsal scale row and
regular scale groups on the tail. Crocodiles with
characteristics of both species have been reported
from coastal regions of Mexico (Powell 1972) and
Belize (Schmidt 1924; Abercrombie et al. 1980;
Platt and Thorbjarnarson 1997; Sigler 1998). These
individuals typically exhibit a reduced number of
dorsal scales in each transverse row, and reduced
or absent subcaudal scale irregularities. In an
examination of museum specimens of C. acutus
collected from throughout its range, Ross and
Ross (1974) found irregular scale groups on the
lateral surface of the tail only where C. acutus was
sympatric with C. moreletii (Belize through Chia-
pas, Mexico), or where the population may have
been influenced by feral C. moreletii (west coast of
Mexico). The dorsal armor of the suspected hy-
brids resembled both parent species (Ross and
Ross 1974). In addition, preliminary microsatellite
analyses of sympatric animals from both species
have suggested that hybridization may be occur-
ring (E. Hekkala and G. Amato pers. comm.).
Therefore, both Morelet’s crocodile and American
crocodile populations that have been characterized
as ‘pure’ warrant vigorous protection.

The average genetic distance between the clades
1 and 2 of Figure 2 was 0.055, a value typical of
interspecific comparisons in other species of
Crocodylus (Ray et al. 2001, and Table 4). Hapl-
otypes in the lower clade include animals from
Banana Bank Lagoon, within the Belize River
drainage, and populations associated with the
New River drainage of north-central Belize. The
presence of C. acutus haplotypes in presumed
C. moreletii habitat raises the question of whether
or not the animals with C. acutus haplotypes are
hybrids, immigrant American crocodiles from the
coastal regions of Belize, or both.

While subadult animals of the two species are
often difficult to distinguish from a distance in the
field, ventral and nuchal scale patterns are gener-
ally reliable diagnostic characters (Brazaitis 1973).
Unfortunately, voucher photographs taken of
most animals were from inappropriate angles and
these scale patterns were not always visible. We
have, however, obtained photographs of several
animals sampled from Banana Bank showing
ventral scale patterns. Three animals (4575–4577)
examined at Banana Bank in July 2002 were phe-
notypically similar to C. moreletii. Two of these
animals had C. acutus-like haplotypes, 4575 and
4577. One crocodile (4675) exhibited a reduced
number of scales (<5, typical of C. acutus) in each
transverse dorsal row, and irregular scale groups
were present only on the lateral surface of the tail.

Obviously, a more extensive study of the mor-
phology of animals considered potential hybrids
must be performed. Our results, however, do
suggest hybridization. The identification of Croc-
odylus acutus haplotypes in or close to main river
channels suggests an avenue for introgression into
C. moreletii habitat. Three of the suspected hy-
brids collected in the New River drainage were
males nearing sexual maturity (total length
[TL] ¼ 167–189 cm, Platt and Thorbjarnarson
2000b), suggesting that male C. acutus could have
traveled inland from the coast via New River or
that hybrid offspring from a C. acutus female mi-
grated into the area. While the former situation is
possible, SGP, TRR, and AGF have collected
Morelet’s crocodiles along the New River for over
ten years (�400 animals) and have found no evi-
dence of purebred C. acutus invading this river
system, however it is possible that some C. acutus
immigrants were missed. We suggest that a more
likely explanation is backcrossing between hybrids
formed initially near the coast and purebred
C. moreletii farther inland. Regardless of their
origin both their size and presence in C. moreletii
habitat suggest that they may eventually establish
territories as breeding adults and that any future
offspring from these individuals and C. moreletii
females in the area will be hybrids.

The existence of potential hybrids at Banana
Bank could also be explained by backcrossing. All
crocodiles captured at this locale were juveniles
(TL ¼ 54–99 cm). Most were approximately the
same size, with only a few being slightly larger
than the others. The small size of these animals
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does not lend support to a long (�36 km overland
or �67 km via the Belize River) migration from
the coast. Instead, these size measurements suggest
these are members of a single or two successive
cohorts from at least one breeding female. We
cannot determine if the maternal parent(s) was
‘‘pure’’ Crocodylus acutus but the lack of definitive
morphological characters identifying animals 4575
and 4577 (both bear C. acutus-like haplotypes but
display primarily C. moreletii scalation) suggest
that if they are hybrids, the cross-species interac-
tion may have occurred two or more generations
previous to this one. Backcrossing between the
initial hybrids and C. moreletii could erase most of
the phenotypic characters passed from the
C. acutus ancestor while allowing the haplotype to
remain intact through maternal transmission. It
may be that some low level of hybridization has
always occurred where the two species are sym-
patric and that what we have observed is typical of
the species’ interaction.

Conclusions and implications

There are several potentially critical conservation
issues that must be considered in light of our
findings. Platt and Thorbjarnarson (1997) ob-
served possible hybrids of C. acutus and C. more-
letii in the coastal regions of southern Belize, but
not in central or northern Belize. Our discoveries
of C. acutus haplotypes in Banana Bank and the
New River drainage indicate that there may be
considerably more genetic contact between these
species than was previously recognized. Crocodylus
moreletii has here-to-fore been considered one of
the least endangered of those crocodilians cur-
rently listed on Appendix I of CITES and Platt
and Thorbjarnarson (2000b) suggested that an
endangered classification is no longer warranted.
If hybridization is indeed occurring, however, it
may be that genetically pure C. moreletii in Belize
are rarer than previously assumed and it is of the
utmost importance that this species not be re-
moved from Appendix I until the degree of inter-
specific genetic contact has been accurately
assessed. Those Morelet’s crocodile populations
that have been identified as genetically pure (e.g.,
the Macal River system in Belize and possibly the
Guatemalan and Mexican populations) should
also be vigorously protected.

A potentially more important issue, however, is
the threat introgression from C. moreletii may
represent to Belizean C. acutus populations. The
recovery of C. acutus from the hunting pressures of
the 1950s and 1960s has been slower than for
C. moreletii (Platt and Thorbjarnarson 2000a).
Thus, it is likely that high levels of hybridization
represent a larger danger to the genetic integrity of
C. acutus than to C. moreletii in Belize. It is
therefore critical that a comparable study of
nuclear and mitochondrial markers in C. acutus be
performed to determine if the introgression
observed is ‘‘one-way’’ or ‘‘two-way’’ in nature. A
study of microsatellite variation in Central Amer-
ican C. acutus populations is currently being con-
ducted by LDD that and colleagues should help
provide an answer to this question.

The results of our study indicate that while
there is some minor evidence of population dif-
ferentiation in Crocodylus moreletii the issue de-
serves more attention and it is critical that future
studies increase sampling outside of Belize. Dever
et al. (2002) attributed the differentiation between
Banana Bank Lagoon and those populations in
North-central Belize to isolation-by-distance. The
mtDNA data presented herein indicate that this
level of differentiation may be due (at least in part)
to the introduction of foreign alleles from C. acu-
tus into the Banana Bank Morelet’s crocodile
population. This result emphasizes the need for
multiple markers in such studies, even if sampled
populations are a priori thought to be ‘‘pure’’.
Furthermore, local conservation and management
efforts designed for either C. moreletii or C. acutus
should incorporate protocols that allow the ge-
netic heritage of their animals to be accurately
determined. It is now clear that range alone cannot
always accurately predict the genetic makeup of
crocodile populations found in every locality.
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